Source code for scenic.core.external_params

"""Support for values which are sampled outside of Scenic.

External Samplers in General
============================

External samplers provide a mechanism to use different types of sampling
techniques, like optimization or quasi-random sampling, from within a Scenic
program. Ordinary random values in Scenic are instances of `Distribution`;
this module defines a special subclass, `ExternalParameter`, representing a
value which is sampled externally. Scenic programs with external parameters
are handled as follows:

    1. During compilation, all instances of `ExternalParameter` are gathered
       together and given to the `ExternalSampler.forParameters` function;
       this function creates an appropriate `ExternalSampler`,
       whose configuration can be controlled using :term:`global parameters`
       (see the function documentation for details).

    2. When sampling a scene, before sampling any other distributions the
       :obj:`~ExternalSampler.sample` method of the `ExternalSampler` is
       called to sample all the external parameters. For active samplers, this
       method passes along the ``feedback`` value given to `Scenario.generate`,
       if any.

    3. Once the external parameters have values, the program is equivalent to
       one without external parameters, and sampling proceeds as usual. As for
       every instance of `Distribution`, the external parameters will have
       their :obj:`~Samplable.sampleGiven` method called once all their
       dependencies have been sampled; by default this method just returns the
       value sampled for this parameter in step (2).

.. note::

    Note that while external parameters, like all instances of `Distribution`,
    are allowed to have dependencies, they are an exception to the usual rule
    that dependencies are always sampled before dependents, because the
    `ExternalSampler.sample` method is called before any other sampling.
    However, as explained above, the :obj:`~Samplable.sampleGiven` method is
    called in the proper order and external samplers which need to do sampling
    based on the values of other distributions can be invoked from it. The
    two-step mechanism with `ExternalSampler.sample` is provided for samplers
    which sample the whole space of external parameters at once (e.g. the
    VerifAI samplers).

Samplers from VerifAI
=====================

The external sampling mechanism is designed to be extensible. The only built-in
`ExternalSampler` is the `VerifaiSampler`, which provides access to the
samplers in the `VerifAI`_ toolkit (which in turn can use Scenic as a modeling
language).

The `VerifaiSampler` supports several types of external parameters corresponding
to the primitive distributions: `VerifaiRange` and `VerifaiDiscreteRange` for
continuous and discrete intervals, and `VerifaiOptions` for discrete sets.
For example, suppose we write::

    ego = new Object at (VerifaiRange(5, 15), 0)

This is equivalent to the ordinary Scenic line :scenic:`ego = new Object at (Range(5, 15), 0)`,
except that the X coordinate of the ego is sampled by VerifAI within the range
(5, 15) instead of being uniformly distributed over it. By default the
`VerifaiSampler` uses VerifAI's `Halton`_ sampler, so the range will still be
covered uniformly but more systematically. If we want to use a different sampler,
we can set the ``verifaiSamplerType`` global parameter::

    param verifaiSamplerType = 'ce'
    ego = new Object at (VerifaiRange(5, 15), 0)

Now the X coordinate will be sampled using VerifAI's `cross-entropy`_ sampler.
If we pass a feedback value to `Scenario.generate` which scores the previous
scene, then the coordinate will not be sampled uniformly but rather converge to
a distribution concentrated on values minimizing the score. Active samplers like
cross-entropy can be used for falsification in this way, driving a system toward
parts of the parameter space where a specification is violated.

The cross-entropy sampler in VerifAI can be started from a non-uniform prior.
Scenic provides a convenient way to define this prior using the ordinary syntax
for distributions::

    param verifaiSamplerType = 'ce'
    ego = new Object at (VerifaiParameter.withPrior(Normal(10, 3)), 0)

Now cross-entropy sampling will start from a normal distribution with mean 10
and standard deviation 3. Priors are restricted to primitive distributions and
in general may be approximated so that VerifAI can handle them -- see
`VerifaiParameter.withPrior` for details.

For more information on how to customize the sampler, see `VerifaiSampler`.

.. _VerifAI: https://github.com/BerkeleyLearnVerify/VerifAI

.. _Halton: https://en.wikipedia.org/wiki/Halton_sequence

.. _cross-entropy: https://en.wikipedia.org/wiki/Cross-entropy_method

"""

from dotmap import DotMap
import numpy

from scenic.core.distributions import Distribution, Options
from scenic.core.errors import InvalidScenarioError


[docs]class ExternalSampler: """Abstract class for objects called to sample values for each external parameter. The initializer for this class takes the same arguments as the factory function `forParameters` below. Attributes: rejectionFeedback: Value passed to the `sample` method when the last sample was rejected. This value can be chosen by a Scenic scenario using the global parameter ``externalSamplerRejectionFeedback``. """ def __init__(self, params, globalParams): # feedback value passed to external sampler when the last scene was rejected self.rejectionFeedback = globalParams.get("externalSamplerRejectionFeedback")
[docs] @staticmethod def forParameters(params, globalParams): """Create an `ExternalSampler` given the sets of external and global parameters. The scenario may explicitly select an external sampler by assigning the :term:`global parameter` ``externalSampler`` to a subclass of `ExternalSampler`. Otherwise, a `VerifaiSampler` is used by default. Args: params (tuple): Tuple listing each `ExternalParameter`. globalParams (dict): Dictionary of global parameters for the `Scenario`, made available here to support sampler customization through setting parameters. Note that the values of these parameters may be instances of `Distribution`! Returns: An `ExternalSampler` configured for the given parameters. """ if len(params) > 0: externalSampler = globalParams.get("externalSampler", VerifaiSampler) if not issubclass(externalSampler, ExternalSampler): raise InvalidScenarioError( f"externalSampler type {externalSampler}" " not subclass of ExternalSampler" ) return externalSampler(params, globalParams) else: return None
[docs] def sample(self, feedback): """Sample values for all the external parameters. Args: feedback: Feedback from the last sample (for active samplers). """ self.cachedSample = self.nextSample(feedback)
[docs] def nextSample(self, feedback): """Actually do the sampling. Implemented by subclasses.""" raise NotImplementedError
[docs] def valueFor(self, param): """Return the sampled value for a parameter. Implemented by subclasses.""" raise NotImplementedError
[docs]class VerifaiSampler(ExternalSampler): """An external sampler exposing the samplers in the VerifAI toolkit. The sampler can be configured using the following Scenic :term:`global parameters`: * ``verifaiSamplerType`` -- sampler type (see the ``verifai.server.choose_sampler`` function); the default is ``'halton'`` * ``verifaiSamplerParams`` -- ``DotMap`` of options passed to the sampler The `VerifaiSampler` supports external parameters which are instances of `VerifaiParameter`. """ def __init__(self, params, globalParams): super().__init__(params, globalParams) import verifai.features import verifai.server # construct FeatureSpace usingProbs = False self.params = tuple(params) for index, param in enumerate(self.params): if not isinstance(param, VerifaiParameter): raise RuntimeError( f"VerifaiSampler given parameter of wrong type: {param}" ) param.sampler = self param.index = index if param.probs is not None: usingProbs = True space = verifai.features.FeatureSpace( { self.nameForParam(index): verifai.features.Feature(param.domain) for index, param in enumerate(self.params) } ) # set up VerifAI sampler samplerType = globalParams.get("verifaiSamplerType", "halton") samplerParams = globalParams.get("verifaiSamplerParams", None) if usingProbs and samplerType == "ce": if samplerParams is None: samplerParams = DotMap() else: samplerParams = samplerParams.copy() # avoid mutating original if "cont" in samplerParams or "disc" in samplerParams: raise RuntimeError( "CE distributions specified in both VerifaiParameters" " and verifaiSamplerParams" ) cont_buckets = [] cont_dists = [] disc_dists = [] for param in self.params: if isinstance(param, VerifaiRange): if param.probs is None: buckets = 5 dist = numpy.ones(buckets) / buckets else: dist = numpy.array(param.probs) buckets = len(dist) cont_buckets.append(buckets) cont_dists.append(dist) elif isinstance(param, VerifaiDiscreteRange): n = param.high - param.low + 1 dist = ( numpy.ones(n) / n if param.probs is None else numpy.array(param.probs) ) disc_dists.append(dist) else: raise RuntimeError(f"Parameter {param} not supported by CE sampler") samplerParams.cont.buckets = cont_buckets samplerParams.cont.dist = numpy.array(cont_dists) samplerParams.disc.dist = numpy.array(disc_dists) data = verifai.server.choose_sampler( space, samplerType, sampler_params=samplerParams ) if not data: raise RuntimeError(f'Unknown VerifAI sampler type "{samplerType}"') self.sampler = data[1] # default rejection feedback is positive so cross-entropy sampler won't update; # for other active samplers an appropriate value should be set manually if self.rejectionFeedback is None: self.rejectionFeedback = 1 self.cachedSample = None def nextSample(self, feedback): return self.sampler.nextSample(feedback) def update(self, sample, info, rho): self.sampler.update(sample, info, rho) def getSample(self): return self.sampler.getSample() def valueFor(self, param): return getattr(self.cachedSample, self.nameForParam(param.index))
[docs] @staticmethod def nameForParam(i): """Parameter name for a given index in the Feature Space.""" return f"param{i}"
[docs]class ExternalParameter(Distribution): """A value determined by external code rather than Scenic's internal sampler.""" def __init__(self): super().__init__() self.sampler = None import scenic.syntax.veneer as veneer # TODO improve? veneer.registerExternalParameter(self)
[docs] def sampleGiven(self, value): """Specialization of `Samplable.sampleGiven` for external parameters. By default, this method simply looks up the value previously sampled by `ExternalSampler.sample`. """ assert self.sampler is not None return self.sampler.valueFor(self)
[docs]class VerifaiParameter(ExternalParameter): """An external parameter sampled using one of VerifAI's samplers.""" def __init__(self, domain): super().__init__() self.domain = domain
[docs] @staticmethod def withPrior(dist, buckets=None): """Creates a `VerifaiParameter` using the given distribution as a prior. Since the VerifAI cross-entropy sampler currently only supports piecewise-constant distributions, if the prior is not of that form it may be approximated. For most built-in distributions, the approximation is exact: for a particular distribution, check its `bucket` method. """ if not dist.isPrimitive: raise RuntimeError( "VerifaiParameter.withPrior called on " f"non-primitive distribution {dist}" ) bucketed = dist.bucket(buckets=buckets) return VerifaiOptions( bucketed.optWeights if bucketed.optWeights else bucketed.options )
[docs]class VerifaiRange(VerifaiParameter): """A :obj:`~scenic.core.distributions.Range` (real interval) sampled by VerifAI.""" _defaultValueType = float def __init__(self, low, high, buckets=None, weights=None): import verifai.features super().__init__(verifai.features.Box([low, high])) if weights is not None: weights = tuple(weights) if buckets is not None and len(weights) != buckets: raise RuntimeError( f"VerifaiRange created with {len(weights)} weights " f"but {buckets} buckets" ) elif buckets is not None: weights = [1] * buckets else: self.probs = None return total = sum(weights) self.probs = tuple(wt / total for wt in weights) def sampleGiven(self, value): value = super().sampleGiven(value) assert len(value) == 1 return value[0]
[docs]class VerifaiDiscreteRange(VerifaiParameter): """A :obj:`~scenic.core.distributions.DiscreteRange` (integer interval) sampled by VerifAI.""" _defaultValueType = float def __init__(self, low, high, weights=None): import verifai.features super().__init__(verifai.features.DiscreteBox([low, high])) if weights is not None: if len(weights) != (high - low + 1): raise RuntimeError( f"VerifaiDiscreteRange created with {len(weights)} weights " f"for {high - low + 1} values" ) total = sum(weights) self.probs = tuple(wt / total for wt in weights) else: self.probs = None def sampleGiven(self, value): value = super().sampleGiven(value) assert len(value) == 1 return value[0]
[docs]class VerifaiOptions(Options): """An :obj:`~scenic.core.distributions.Options` (discrete set) sampled by VerifAI.""" @staticmethod def makeSelector(n, weights): return VerifaiDiscreteRange(0, n, weights)